
International Journal of Theoretical Physics, VoL 28, No. 7, 1989 

Mielnik and Cantoni Transition Probabilities 

Sylv ia  P u l m a n n o v ~  1 

Received September 29, 1988 

It is shown that when a Mielnik transition probability space is given, Cantoni 
transition probabilities can also be defined on it. A condition is given under 
which these transition probabilities are equal. 

1. I N T R O D U C T I O N  

By a transit ion probabi l i ty  space (tps) we mean a couple (S, p)  where 
S is an abstract  set and p: S x S ~  [0, 1] satisfies the following condit ions:  

(i) p (a , / 3 )  = 1 iff a =/3. 
(ii) p ( a , / 3 )  = 0  i f fp(/3,  a ) = O .  
(iii) Calling a and /3  or thogonal  ( a  l / 3 )  if p ( a , / 3 )  =0 ,  we have 

p(a , /3 )  = 1 
t ieR 

for every maximal  pairwise or thogonal  subset R of  S and every a ~ S. 
The set S is interpreted as a set o f  states o f  a physical system and 

p ( a , / 3 )  as the probabi l i ty  o f  transit ion f rom the state a to the state/3. The 
not ion o f  an abstract  transit ion probabil i ty space was in t roduced by Mielnik 
(1968). We note that our  definition is more general than Mielnik's  original 
definition: we replaced the symmetry condi t ion  p(a , /3 )  =p(/3,  a )  by the 
weaker  condi t ion (ii). 

It has been shown that to every tps an o r thomodula r  structure (a 
quan tum logic) is related (Belinfante, 1976; Deliyannis,  1984; Pulmannov~i, 
1986). Recall that  a quan tum logic is a partially ordered set L with 0 and 
1, with the o r thocomplementa t ion  ': L ~  L such that: 

(i) ( a ' ) ' =  a. 
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(ii) a -< b implies b'-< a ' .  
(iii) a v a ' =  1. 
(iv) Call ing a, b c L or thogona l  (a  • b), i f  a-< b' ,  the s u p r e m u m  V a~ 

exists in L for  any sequence  {ai} of  pairwise or thogonal  e lements  of  L (i.e., 
L is ~r-orthocomplete) .  

(v) a -< b implies that  there is c ~ L such that  c • a and a v c = b (i.e., 
L is o r thomodula r ) .  

A state on quan tum logic L is a m a p  m: L ~  [0, 1] such that  (i) r e ( l )  = 1 
and  (ii) m ( V  ai)=2~ m(ai) for  any sequence  {a~} of  pairwise or thogona l  
e lements  of  L. That  is, a state is a o '-addit ive probabi l i ty  measure  on L. 

A logic L is called o r thocomple te  if  V a~ exists in L for  any set o f  
pairwise or thogona l  e lements  of  L. A state m on L is called comple te ly  
addit ive if m ( V  a ~ ) = ~  m(ai) for  any set {a~} of  pairwise or thogonal  ele- 
ments  of  L such that  V ai exists in L. 

A set M of  states on L is ordering if a :~ b implies that  there is m c M 
such that  re(a) > m(b), and strongly ordering if  a ~r b implies  that  there is 
m ~ M such that  rn(a) = 1 and  re(b) ~ 1. 

A funct ional  quan tum logic is a set L c  [0, 1] M, where  M is any set, 
which satisfies the fol lowing condit ions:  

(i) I ~ L ,  where  l ( x ) = l  for  all x~M.  
(ii) f ~  L implies 1 - f c  L. 
(iii) With f and g called or thogonal  ( f  • g) if f +  g-< 1 [i.e., f (x )  + 

g(x)-< 1 for  all x ~ M] ,  we have Y~f ~ L for  any sequence {f}  of  pairwise 
or thogona l  e lements  of  L. 

The  set (L,-<,  ', 0, 1), where f - < g  iff f(x)<-g(x) for all x ~  M and 
f '  = 1 - f ,  is a quan tum logic. Moreover ,  every x c M generates  a state mx 
on L by the prescr ip t ion mx(f) = f ( x ) ,  and the set {mxlrn ~ M} is order ing 
for  L (Maczyn~ki,  1974). The set {taxi x ~ M} is s trongly ordering for  L if 
{xlf(x) = 1} c {xlg(x ) = 1} implies f -<  g. A funct ional  quan tum logic is 
o r thocomple te  if  the condi t ion (iii) is rep laced  by: 

(iii') Y~f ~ L for any  set {f}  of  pairwise or thogonal  e lements  of  L. 

2. C A N T O N I  T R A N S I T I O N  P R O B A B I L I T I E S  O N  A T P S  

An observable  on a quan tum logic L is a m a p  x f rom the Borel subsets 
B ( ~ )  of  the real line Yt to L such that: 

(i) x ( ~ ) =  1. 
(ii) x(EC)=x(E) ', where E c = ~ - E .  
(iii) x([._J Ei) = V x(Ei) for  any sequence  {El} of  disjoint e lements  of  

B ( ~ ) .  
I f  m is a state on L, then m x =  m o x is a probabi l i ty  measure  on B ( ~ ) .  

Let x be an observable  and  p, q be states on L. Then there is a finite Borel 
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measure o- such that Px, qx << o- and the expression 

f (dpx~l/2(dqx~ ~/2 
T~/2(P' q) = \ do-,] \ do',] do" 

is independent  of o-. Following Cantoni (1975); we define 

T(p, q ) =  inf Tx(p, q) 
x 

where the infimum is over all observables on L. The T(p, q) is the Cantoni 
transition probabili ty for p, q. 

Let (S, p) be a tps and let L be the corresponding quantum logic. To 
sketch briefly the construction of L, we shall follow Pulmannov~i (1986). 
Let us denote by ~ the set of  all pairwise orthogonal subsets B of $. We 
suppose that Q ~  ~ and {a}c  ~ for any a c S. By Zorn's  lemma, to every 
B c ~ there is a C ~ ~ such that B u C is a maximal subset of  pairwise 
orthogonal elements of  S (a base of  S). For B1, B2 in ~ we put B1 -- B2 if 
there is C c  ~ such that B~u C and B2w C are bases of  S. Then - is an 
equivalence relation. Let ~ be the set of  all equivalence classes, i.e., 

= ~ / - .  Let /~  denote the equivalence class containing B. We put 

f ~ ( a ) =  2 p(a , /~)  
/3EB 

It can be shown that f ~  is well defined (i.e., independent of the choice of  
the representant B of  B), and the set L = {f~]/~ ~ ~}  forms an orthocomplete 
atomistic quantum logic with the atoms f~, where a is the unique represen- 
tant of the class 8. We note that the atomicity of L is implied by the 
conditions (i) and (iii) of  the definition of tps. These conditions also imply 
that the states ms on L, defined by 

rn~( /~ )=  • p(a,~) 
~cB 

must be pure (i.e., m~ cannot be represented as a convex combination of 
any other states m~, my,/3, y ~  S). As a consequence of (iii), we get that L 
is orthocomplete and the states m~, a ~ S, are completely additive. 

To simplify the notations, we shall write a instead of rn~ to denote 
the state on L generated by the element a ~ S. To compare the Cantoni 
transition probabilities T(a, ~) with the original transition probabilities 
p(a,/~), we shall use the Gudder  (1981) expression 

T(a, /~)1/2 = i n f ~  ot(ai)l/2t~(ai) 1/2 

where the infimum is over all finite maximal orthogonal sequences in L (an 
orthogonal sequence {a~, a 2 , . . . ,  a,} is maximal if ~/7=~ ai = 1). 
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Theorem I. Let (S, p) be a tps. Then 

T(a, /~)1/2= inf ~ p (a ,  y)l/2p(fl, y)~/2 
R yER 

where the infimum is over all bases R of S. 

Proof By atomicity and orthomodulari ty of  L, every a c L can be 
expressed as a supremum of pairwise orthogonal atoms. Let {ai}i<~ be a 
finite maximal orthogonal sequence in L. Let a~ = ~/j b0, i = 1, 2 . . . .  , n, 
where {b~}j are sets of  mutually orthogonal atoms in L. By the Schwarz 
inequality, 

oL(ai)l/21~(ai) 1/2= ~ a(b O) 13(b 0) 
i=1 i=1 

->EE o460)1/a~(b,j) 1/~= E p(~. ./),/2p(fl, v)~/2 
i j TER 

where R = {ba)i,j is a base of  S. [Recall that atoms in L are of  the form fy 
and a(fv)=p(a, y).] This implies that 

T(a,/~)1/2 = inf• a(ai)l/zfl(a~) 1/2 

->inf E p(a, .),)~/2p(fl, 7)1/2 
R TE R 

where the first infimum is over all finite maximal orthogonal sequences {a~} 
in L and the second infimum is over all bases R of S. 

For every base R of S we have 

Z p(a, y)'/Zp(~, y),/2 = sup Z p(a, y),/2p(f~, y),/2 
T~R K T~K 

where the supremum is over all finite subsets K of R. Therefore, there is a 
sequence {K,} of finite subsets of  R such that 

E p(a, y)i/2p(~, y)X/2= lim Y~ p(a, y),/2p(fl, y)X/2 

For every K. ,  

is a finite maximal orthogonal sequence in L. We have 

[ 11'  E p(ol, T)I/2p(~, y)1/2+ EK,, p (a ,  Y) 
y~ K. T ~ 

X P ( /~ ,  ')/) ~ Z p ( o ! ,  , y ) l / 2 p ( / ~ ,  ,)/)1/2 
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which implies that 

lim p ( a ,  y)  ~ p(/3, y)  = 0 
n~cX) y ~  Kn  T a R _ K .  

From this it follows that for  every base R, 

y. p(ce, y)l/2p(fl, y ) l / 2 = i n f  ~ ce(ai)l/2fi(ai)l/2 
"ya R 

where the infimum is over  all finite maximal  sequences {ai} such that every 
ai is the supremum of  some fv, Y c R. This, together  with the first part  of  
the proof ,  yields the required equality. �9 

Corollary 1. T( a, fl ) has the following properties:  
(i) T ( a , / 3 ) - < l ,  T(a,  f i ) = l  iff a = f i .  
(ii) T (a , / 3 )  = T(~,  a ) .  
(iii) T(a,/3)-<min{p(a, /3) ,p(/3,  a)}. 

Proof. (i) 

T(a,  13) 1/2 = inf  ~ p(a,  ,y)l/2p(/3, 7)1/2 
R T c R  

[ 
- < i n f .  2 p (a ,  ,/) }~ p(13, y) = 1 

R L~,cR LyER 

If  a = fi, then 

T(a ,  a )~ /2= in f  3~ p ( a ,  3,) = 1 
R T~ R 

On the other  hand,  let 

inf  E p(a,  ,y)l/2p(/3, 7)1/2= 1 
R y c R  

Take R such that a e R; then p(c~, y) -- 0 for  y e R - a. Therefore  

1 = ~ p(a,  y),/2p(/3, y) l /2=p( /3 ,  a) , /2 
T E R  

which implies /3 = a. 
(ii) is immediate.  
Note  that  (i) and (ii) are satisfied by any Cantoni  transition prob- 

abilities. 
(iii) Take R such that  f i e  R. Then 

Y p(,~, ~),/2p(/3, ~),/2=p(~,/3),/2_> T(</3),/2 
T c R  

Similarly, taking R such that c~ e R, we obtain p(fl, a) > - T(a,/3). 
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Corollary 2. We have T(a , /3)  = p ( a , / 3 )  iff for every base R of S the 
following inequality holds: 

p(oL, /3)1/2~ ~, p(OL, 3/)t/2p(j[~, ,V)I/2 
TER 

If  a,/3 are unit vectors in a Hilbert space H and p (a ,  13)= ](a,/3)t 2, 
where ( . , . )  is the inner product in H, then for every orthonormal base R 
in H we have 

= 2 3/>(%/3> -< Y 3/>11</3, 3/>1 
Tr T~R 

so that the condition of Corollary 2 is satisfied [compare with Hadjisavvas 
(1982)]. The condition of Corollary 2 can be considered as a necessary 
condition of the embeddabili ty of  a tps into a Hilbert space. In particular, 
this condition implies the symmetry ofp. The following example (Belinfante, 
1976) shows that the condition of Corollary 2 need not be satisfied even in 
a symmetric tps: 

a /3 3/ 6 ~ p e r/ 
a 1 0 0 a 1 - a  a 0 0 
/3 0 1 0 1 - a  a 1 - a - b  b 1 - b  

3/ 0 0 1 0 0 b 1 -  b b 
a 1 - a  0 1 0 1 - b  b 1 - a - b  

r 1 - a  a 0 0 1 b 0 a 
p a 1 - a  - b  b 1 - b  0 1 0 1 - a  
e 0 b 1 - b  b 0 0 1 0 
rl 0 1 - b  b 1 - a - b  a 1 - a  0 1 

There are four bases, (a,/3, 3/), (a, e, 77), (3,, 3, ~-), (Tr, p, e). An easy compu- 
tation shows that T(/3, e) = (1 - a ) b ,  while p(/3, e) = b. 

Note that if the tps is generated by a (total) transition amplitude space 
(Gudder  and Pulmannovfi, 1987), the condition of Corollary 2 is satisfied. 

Let f~ ~ L be defined by f~ (/3) = p(/3, a ) , /3  ~ S. Let x~ be the observable 
defined by 

f f~ if I c E ,  0 ~ E  

x ~ ( E ) _ J l - f ~  if I ~ E ,  0 ~ E  
if I ~ E ,  0 ~ E  

if l e E ,  0 ~ E  

Proposition 1. Let ( S , p )  be a tps. Then for every a , / 3 c S ,  p(/3, a ) =  

T~o(~,/3). 
Proof  For any observable x we have 

T~(a,/3)~/2 = inf}~ o~(Ei)~/2/3~(E~) ~/2 
i 
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where the inf imum is over  all finite Borel part i t ions (Gudder ,  1981). For  
any  finite Borel par t i t ion which is fine enough  to separa te  0 and 1, we have 

E ax~(E,)'/Z/3xo(E,) ~/2 = a(f~)~/2/3 (L)~/2 + c~(1 - f~) ' /2 /3  (1 _f~)~/2 
i 

: p ( /3 ,  Od) 1/2 

Therefore ,  Txo(a , /3 )=p( /3 ,  a ) .  �9 

3. METRICS ON A TPS 

Gudder (1981) has shown that  

d , ( a , / 3 )  = {211 - T( a, /3 )1/2]}1/2 

is a metr ic  on the states of  a logic L. In the case of  a tps logic, dl is a metr ic  
on S. By Cantoni  (1985), 

dz(a,/3) = 2 arccos[  T(a,/3)1/2] 

is also a metr ic  on S. It  is easily seen that  the topologies  induced by dl and 
d2 are equivalent .  

For  a subset  M of  S put  M • = { a  ~ SIp(a ,/3) = 0  for  al l /3 c M}. 

Proposition 2. Let (S, p)  be a tps satisfying the condi t ion of  Corol la ry  
2. I f  M c S is such that  M = M •177 then M is closed in the topo logy  induced 
b y d = d l  (or d = d 2 ) .  

Proof Let a,, c M, d(a, ,  a) --> O. Let/3 c M • Then p(a,,/3) = 0, which 
implies  T( a,, /3 ) = 0, n = 1, 2 , . . . .  Therefore  d(a, an)+d(/3, a)>_ 
d (an , / 3 )  =x/2.  Hence  d ( a , / 3 )  =x/2, which implies  T(a,/3) = p ( a , / 3 )  = 0, 
hence c~ c M • : M. 

We say that  a subset  M of  S is a subspace  if for  any finite subset  F 
of  M we have F - L ' c  M. Propos i t ion  2 implies  that  p rovided  the condi t ion 
of  Coro l la ry  2 is satisfied, every finite subspace  F •177 is topological ly  closed. 
It is an open  quest ion unde r  what  condi t ions on a tps the equali ty A] td = M •177 
holds  for  every subspace  M of  S. �9 
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