Svlvia Pulmannová¹

Received September 29, 1988

It is shown that when a Mielnik transition probability space is given, Cantoni transition probabilities can also be defined on it. A condition is given under which these transition probabilities are equal.

1. INTRODUCTION

By a transition probability space (tps) we mean a couple (S, p) where S is an abstract set and $p: S \times S \rightarrow [0, 1]$ satisfies the following conditions:

- (i) $p(\alpha, \beta) = 1$ iff $\alpha = \beta$.
- (ii) $p(\alpha, \beta) = 0$ *iff* $p(\beta, \alpha) = 0$.
- (iii) Calling α and β orthogonal $(\alpha \perp \beta)$ if $p(\alpha, \beta) = 0$, we have

$$
\sum_{\beta \in R} p(\alpha, \beta) = 1
$$

for every maximal pairwise orthogonal subset R of S and every $\alpha \in S$.

The set S is interpreted as a set of states of a physical system and $p(\alpha, \beta)$ as the probability of transition from the state α to the state β . The notion of an abstract transition probability space was introduced by Mielnik (1968). We note that our definition is more general than Mielnik's original definition: we replaced the symmetry condition $p(\alpha, \beta) = p(\beta, \alpha)$ by the weaker condition (ii).

It has been shown that to every tps an orthomodular structure (a quantum logic) is related (Belinfante, 1976; Deliyannis, 1984; Pulmannová, 1986). Recall that a quantum logic is a partially ordered set L with 0 and 1, with the orthocomplementation $: L \rightarrow L$ such that:

(i) $(a')' = a$.

^IMathematics Institute, Slovak Academy of Sciences, 814 73 Bratislava, Czechoslovakia.

712 Puimannovd

(ii) $a \leq b$ implies $b' \leq a'$.

(iii) $a \vee a' = 1$.

(iv) Calling $a, b \in L$ orthogonal $(a \perp b)$, if $a \leq b'$, the supremum $\vee a_i$ exists in L for any sequence $\{a_i\}$ of pairwise orthogonal elements of L (i.e., L is σ -orthocomplete).

(v) $a \le b$ implies that there is $c \in L$ such that $c \perp a$ and $a \vee c = b$ (i.e., L is orthomodular).

A state on quantum logic L is a map $m: L \rightarrow [0, 1]$ such that (i) $m(1) = 1$ and (ii) $m(\sqrt{a_i}) = \sum m(a_i)$ for any sequence $\{a_i\}$ of pairwise orthogonal elements of L. That is, a state is a σ -additive probability measure on L.

A logic L is called orthocomplete if $\bigvee a_i$ exists in L for any set of pairwise orthogonal elements of L . A state m on L is called completely additive if $m(\sqrt{a_i})=\sum m(a_i)$ for any set $\{a_i\}$ of pairwise orthogonal elements of L such that $\bigvee a_i$ exists in L.

A set M of states on L is *ordering* if $a \neq b$ implies that there is $m \in M$ such that $m(a) > m(b)$, and *strongly ordering* if $a \neq b$ implies that there is $m \in M$ such that $m(a) = 1$ and $m(b) \neq 1$.

A functional quantum logic is a set $L \subset [0, 1]^M$, where M is any set, which satisfies the following conditions:

(i) $1 \in L$, where $1(x)=1$ for all $x \in M$.

(ii) $f \in L$ implies $1 - f \in L$.

(iii) With f and g called orthogonal $(f \perp g)$ if $f+g \le 1$ [i.e., $f(x)$ + $g(x) \le 1$ for all $x \in M$, we have $\sum f_i \in L$ for any sequence $\{f_i\}$ of pairwise orthogonal elements of L.

The set $(L, \leq, ', 0, 1)$, where $f \leq g$ iff $f(x) \leq g(x)$ for all $x \in M$ and $f' = 1 - f$, is a quantum logic. Moreover, every $x \in M$ generates a state m_x on L by the prescription $m_x(f) = f(x)$, and the set $\{m_x | m \in M\}$ is ordering for L (Maczynski, 1974). The set $\{m_x | x \in M\}$ is strongly ordering for L if ${x | f(x) = 1} \subset {x | g(x) = 1}$ implies $f \le g$. A functional quantum logic is orthocomplete if the condition (iii) is replaced by:

(iii') $\sum f_i \in L$ for any set $\{f_i\}$ of pairwise orthogonal elements of L.

2. CANTONI TRANSITION PROBABILITIES ON A TPS

An observable on a quantum logic L is a map x from the Borel subsets $B({\mathcal{R}})$ of the real line $\mathcal R$ to L such that:

(i) $x({\Re}) = 1$.

(ii) $x(E^c) = x(E)$, where $E^c = \mathcal{R} - E$.

(iii) $x(\lfloor \cdot \rfloor E_i) = \bigvee x(E_i)$ for any sequence $\{E_i\}$ of disjoint elements of $B({\mathcal{R}}).$

If m is a state on L, then $m_x = m \circ x$ is a probability measure on $B(\mathcal{R})$. Let x be an observable and p , q be states on L. Then there is a finite Borel

measure σ such that $p_x, q_x \ll \sigma$ and the expression

$$
T_x^{1/2}(p,q) = \int \left(\frac{dp_x}{d\sigma}\right)^{1/2} \left(\frac{dq_x}{d\sigma}\right)^{1/2} d\sigma
$$

is independent of σ . Following Cantoni (1975); we define

$$
T(p, q) = \inf_x T_x(p, q)
$$

where the infimum is over all observables on *L*. The $T(p, q)$ is the Cantoni transition probability for p, q.

Let (S, p) be a tps and let L be the corresponding quantum logic. To sketch briefly the construction of L, we shall follow Pulmannová (1986). Let us denote by $\mathcal B$ the set of all pairwise orthogonal subsets B of S . We suppose that $\emptyset \in \mathcal{B}$ and $\{\alpha\} \in \mathcal{B}$ for any $\alpha \in S$. By Zorn's lemma, to every $B \in \mathcal{B}$ there is a $C \in \mathcal{B}$ such that $B \cup C$ is a maximal subset of pairwise orthogonal elements of S (a base of S). For B_1 , B_2 in \Re we put $B_1 \sim B_2$ if there is $C \in \mathcal{B}$ such that $B_1 \cup C$ and $B_2 \cup C$ are bases of S. Then \sim is an equivalence relation. Let $\tilde{\mathcal{B}}$ be the set of all equivalence classes, i.e., $\widetilde{\mathcal{B}} = \mathcal{B}/\sim$. Let \widetilde{B} denote the equivalence class containing B. We put

$$
f_{\tilde{B}}(\alpha) = \sum_{\beta \in B} p(\alpha, \beta)
$$

It can be shown that $f_{\tilde{B}}$ is well defined (i.e., independent of the choice of the representant B of \tilde{B}), and the set $L = {f \tilde{A} | \tilde{B} \in \tilde{B} }$ forms an orthocomplete atomistic quantum logic with the atoms f_{α} , where α is the unique representant of the class $\tilde{\alpha}$. We note that the atomicity of L is implied by the conditions (i) and (iii) of the definition of tps. These conditions also imply that the states m_{α} on L, defined by

$$
m_{\alpha}(f_{\tilde{B}}) = \sum_{\beta \in B} p(\alpha, \beta)
$$

must be pure (i.e., m_{α} cannot be represented as a convex combination of any other states m_{β} , m_{γ} , β , $\gamma \in S$). As a consequence of (iii), we get that L is orthocomplete and the states m_{α} , $\alpha \in S$, are completely additive.

To simplify the notations, we shall write α instead of m_{α} to denote the state on L generated by the element $\alpha \in S$. To compare the Cantoni transition probabilities $T(\alpha, \beta)$ with the original transition probabilities $p(\alpha, \beta)$, we shall use the Gudder (1981) expression

$$
T(\alpha, \beta)^{1/2} = \inf \sum \alpha(a_i)^{1/2} \beta(a_i)^{1/2}
$$

where the infimum is over all finite maximal orthogonal sequences in L (an orthogonal sequence $\{a_1, a_2, \ldots, a_n\}$ is maximal if $\bigvee_{i=1}^n a_i = 1$.

714 **Pulmannová**

Theorem 1. Let (S, p) be a tps. Then

$$
T(\alpha, \beta)^{1/2} = \inf_{R} \sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2}
$$

where the infimum is over all bases R of S .

Proof. By atomicity and orthomodularity of L, every $a \in L$ can be expressed as a supremum of pairwise orthogonal atoms. Let $\{a_i\}_{i\leq n}$ be a finite maximal orthogonal sequence in L. Let $a_i = \bigvee_i b_{ii}, i = 1, 2, ..., n$, where $\{b_{ij}\}\$ are sets of mutually orthogonal atoms in L. By the Schwarz inequality,

$$
\sum_{i=1}^{n} \alpha(a_i)^{1/2} \beta(a_i)^{1/2} = \sum_{i=1}^{n} \left[\sum_{j} \alpha(b_{ij}) \right]^{1/2} \left[\sum_{j} \beta(b_{ij}) \right]^{1/2}
$$

$$
\geq \sum_{i} \sum_{j} \alpha(b_{ij})^{1/2} \beta(b_{ij})^{1/2} = \sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2}
$$

where $R = \{b_{ij}\}_{i,j}$ is a base of S. [Recall that atoms in L are of the form f_{γ} and $\alpha(f_\gamma) = p(\alpha, \gamma)$.] This implies that

$$
T(\alpha, \beta)^{1/2} = \inf \sum_{\alpha} \alpha(a_i)^{1/2} \beta(a_i)^{1/2}
$$

\n
$$
\geq \inf_{R} \sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2}
$$

where the first infimum is over all finite maximal orthogonal sequences $\{a_i\}$ in L and the second infimum is over all bases R of S .

For every base R of S we have

$$
\sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2} = \sup_{K} \sum_{\gamma \in K} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2}
$$

where the supremum is over all finite subsets K of R . Therefore, there is a sequence ${K_n}$ of finite subsets of R such that

$$
\sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2} = \lim_{n \to \infty} \sum_{\gamma \in K_n} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2}
$$

For every K_n ,

$$
\{f_{\gamma}|\gamma\in K_n\}\cup\left\{\bigvee_{\gamma\in R-K_n}f_{\gamma}\right\}
$$

is a finite maximal orthogonal sequence in L. We have

$$
\sum_{\gamma \in K_n} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2} + \left[\sum_{\gamma \in R - K_n} p(\alpha, \gamma) \right]^{1/2}
$$

$$
\times \left[\sum_{\gamma \in R - K_n} p(\beta, \gamma) \right]^{1/2} \ge \sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2}
$$

which implies that

$$
\lim_{n\to\infty}\left[\sum_{\gamma\in R-K_n}p(\alpha,\gamma)\right]^{1/2}\left[\sum_{\gamma\in R-K_n}p(\beta,\gamma)\right]^{1/2}=0
$$

From this it follows that for every base R ,

$$
\sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2} = \inf \sum \alpha(a_i)^{1/2} \beta(a_i)^{1/2}
$$

where the infimum is over all finite maximal sequences $\{a_i\}$ such that every a_i is the supremum of some f_{γ} , $\gamma \in R$. This, together with the first part of the proof, yields the required equality. \blacksquare

Corollary 1.
$$
T(\alpha, \beta)
$$
 has the following properties:
\n(i) $T(\alpha, \beta) \le 1$, $T(\alpha, \beta) = 1$ iff $\alpha = \beta$.
\n(ii) $T(\alpha, \beta) = T(\beta, \alpha)$.
\n(iii) $T(\alpha, \beta) \le \min\{p(\alpha, \beta), p(\beta, \alpha)\}$.
\n**Proof.** (i)
\n
$$
T(\alpha, \beta)^{1/2} = \inf_{R} \sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2}
$$
\n
$$
\le \inf_{R} \left[\sum_{\gamma \in R} p(\alpha, \gamma) \right]^{1/2} \left[\sum_{\gamma \in R} p(\beta, \gamma) \right]^{1/2} = 1
$$

If $\alpha = \beta$, then

$$
T(\alpha, \alpha)^{1/2} = \inf_{R} \sum_{\gamma \in R} p(\alpha, \gamma) = 1
$$

On the other hand, let

$$
\inf_{R} \sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2} = 1
$$

Take R such that $\alpha \in R$; then $p(\alpha, \gamma) = 0$ for $\gamma \in R - \alpha$. Therefore

$$
1 = \sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2} = p(\beta, \alpha)^{1/2}
$$

which implies $\beta = \alpha$.

(ii) is immediate.

Note that (i) and (ii) are satisfied by any Cantoni transition probabilities.

(iii) Take R such that $\beta \in R$. Then

$$
\sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2} = p(\alpha, \beta)^{1/2} \ge T(\alpha, \beta)^{1/2}
$$

Similarly, taking R such that $\alpha \in R$, we obtain $p(\beta, \alpha) \geq T(\alpha, \beta)$.

Corollary 2. We have $T(\alpha, \beta) = p(\alpha, \beta)$ iff for every base R of S the following inequality holds:

$$
p(\alpha, \beta)^{1/2} \leq \sum_{\gamma \in R} p(\alpha, \gamma)^{1/2} p(\beta, \gamma)^{1/2}
$$

If α, β are unit vectors in a Hilbert space H and $p(\alpha, \beta) = |\langle \alpha, \beta \rangle|^2$, where $\langle \cdot, \cdot \rangle$ is the inner product in H, then for every orthonormal base R in H we have

$$
|\langle \alpha, \beta \rangle|
$$
 = $\left| \sum_{\gamma \in R} \langle \alpha, \gamma \rangle \langle \gamma, \beta \rangle \right| \le \sum_{\gamma \in R} |\langle \alpha, \gamma \rangle| |\langle \beta, \gamma \rangle|$

so that the condition of Corollary 2 is satisfied [compare with Hadjisavvas (1982)]. The condition of Corollary 2 can be considered as a necessary condition of the embeddability of a tps into a Hilbert space. In particular, this condition implies the symmetry of p . The following example (Belinfante, 1976) shows that the condition of Corollary 2 need not be satisfied even in a symmetric tps:

There are four bases, (α, β, γ) , $(\alpha, \varepsilon, \eta)$, (γ, δ, π) , (π, ρ, ε) . An easy computation shows that $T(\beta, \varepsilon) = (1 - a)b$, while $p(\beta, \varepsilon) = b$.

Note that if the tps is generated by a (total) transition amplitude space (Gudder and Pulmannová, 1987), the condition of Corollary 2 is satisfied.

Let $f_{\alpha} \in L$ be defined by $f_{\alpha}(\beta) = p(\beta, \alpha)$, $\beta \in S$. Let x_{α} be the observable defined by

Proposition 1. Let (S, p) be a tps. Then for every $\alpha, \beta \in S$, $p(\beta, \alpha)$ = $T_{x}(\alpha,\beta).$

Proof. For any observable x we have

$$
T_x(\alpha, \beta)^{1/2} = \inf \sum_i \alpha_x (E_i)^{1/2} \beta_x (E_i)^{1/2}
$$

where the infimum is over all finite Borel partitions (Gudder, 1981). For any finite Borel partition which is fine enough to separate 0 and 1, we have

$$
\sum_{i} \alpha_{x_{\alpha}}(E_i)^{1/2} \beta_{x_{\alpha}}(E_i)^{1/2} = \alpha (f_{\alpha})^{1/2} \beta (f_{\alpha})^{1/2} + \alpha (1 - f_{\alpha})^{1/2} \beta (1 - f_{\alpha})^{1/2}
$$

$$
= p(\beta, \alpha)^{1/2}
$$

Therefore, $T_{x}(\alpha,\beta) = p(\beta,\alpha)$.

3. METRICS ON A TPS

Gudder (1981) has shown that

$$
d_1(\alpha, \beta) = \{2[1 - T(\alpha, \beta)^{1/2}]\}^{1/2}
$$

is a metric on the states of a logic L. In the case of a tps logic, d_1 is a metric on S. By Cantoni (1985),

$$
d_2(\alpha, \beta) = 2 \arccos[T(\alpha, \beta)^{1/2}]
$$

is also a metric on S. It is easily seen that the topologies induced by d_1 and $d₂$ are equivalent.

For a subset M of S put $M^{\perp} = {\alpha \in S | p(\alpha, \beta) = 0 \text{ for all } \beta \in M}.$

Proposition 2. Let (S, p) be a tps satisfying the condition of Corollary 2. If $M \subseteq S$ is such that $M = M^{\perp\perp}$, then M is closed in the topology induced by $d = d_1$ (or $d = d_2$).

Proof. Let $\alpha_n \in M$, $d(\alpha_n, \alpha) \to 0$. Let $\beta \in M^{\perp}$. Then $p(\alpha_n, \beta) = 0$, which implies $T(\alpha_n, \beta) = 0$, $n = 1, 2, \ldots$ Therefore $d(\alpha, \alpha_n) + d(\beta, \alpha) \ge$ $d(\alpha_n,\beta) = \sqrt{2}$. Hence $d(\alpha,\beta) = \sqrt{2}$, which implies $T(\alpha,\beta) = p(\alpha,\beta) = 0$, hence $\alpha \in M^{\perp \perp} = M$.

We say that a subset M of S is a subspace if for any finite subset F of M we have $F^{\perp\perp} \subset M$. Proposition 2 implies that provided the condition of Corollary 2 is satisfied, every finite subspace $F^{\perp\perp}$ is topologically closed. It is an open question under what conditions on a tps the equality $\bar{M}^d = M^{\perp \perp}$ holds for every subspace M of S. \blacksquare

REFERENCES

- Belinfante, J. (1976). Transition probability spaces, *Journal of Mathematical Physics,* 17, 285-291.
- Cantoni, V. (1975). Generalized transition probability, *Communications in Mathematical Physics, 44,* 125-128.
- Cantoni, V. (1985). Superpositions of physical states: A metric viewpoint, *Helvetica Physica Acta,* 58, 956-968.
- Deliyannis, P. (1984). Quantum logics derived from asymmetric Mielnik forms, *International Journal of Theoretical Physics,* 23, 217-226.
- Gudder, S. (1981). Expectation and transition probability, *International Journal of Theoretical Physics,* 20, 383-395.
- Gudder, S., and Pulmannová, S. (1987). Transition amplitude spaces, *Journal of Mathematical Physics,* 28, 376-385.
- Hadjisavvas, N. (1982). On Cantoni's generalized transition probability, *Communications in Mathematical Physics,* 83, 43-48.
- Maczyngki, M. (1974). Functional properties of quantum logica, *International Journal of Theoretical Physics,* 11, 149-156.
- Mielnik, B. (1968). Geometry of quantum states, *Communications in Mathematical Physics, 9,* 55-80.
- Pulmannová, S. (1986). Functional properties of transition probability spaces, *Reports on Mathematical Physics,* 24, 81-86.

l,